#### KSC2015 (대한심장학회 제59차 추계학술대회)

# Lactate-Induced Cell Signaling in Hypoxic Microenvironment

2015. 10. 17.

Korea Research Institute of Bioscience & Biotechnology (KRIBB)

YEOM YOUNG IL

### Hypoxia

- A condition in which the body or a region of the body is deprived of adequate oxygen supply
- Effects of hypoxia on cell physiology
  - Shrinkage of cellular activity and vitality
  - Prolonged hypoxia → Cell death

### Hypoxia responses

- Cellular responses to prolonged hypoxia associated with a venous blood oxygen level below 6% (40mmHg)
- Two types of responses
  - Increasing the oxygen supplying capacity; Angiogenesis, Erythropoiesis
  - Maintenance of cell viability and growth; Metabolic reprogramming, Defending cell death, Promoting hypoxic cell growth, Maintaining acid-base balance, Increasing cell motility

### HIF-dependent regulation of hypoxia responses



### HIF independence of hypoxia responses

- Tumors derived from *HIF1A-/-* ES cells had growth advantages owing to decreased hypoxia-induced apoptosis and increased stress-induced proliferation (Carmeliet et al., 1998).
- Angiogenesis was preserved in HIF1A<sup>-/-</sup> ES cells (Hopfl et al., 2002).
- Induction of other pro-angiogenic factors such as IL-8 preserved the angiogenic response in HIF-1α-deficient colon cancer cells (Mizukami et al., 2005).
- The pro-angiogenic factor, VEGF, can be induced via both HIF-dependent and -independent pathways (Mizukami et al., 2004).
- Multiple pathways and transcription factors (TFs) other than HIFs are known to respond to hypoxia to induce biological responses in a HIF-independent manner.
  - Oxygen-regulatable non-HIF TFs activated in hypoxia; NF-κB, AP-1, CEBP (Cummins and Taylor, 2005)
  - Hypoxia-activated protein kinases; PKA, PKC, PI3K, Akt, JNK, Pyk2, Src, p38, ERK1/2 (Seta et al., 2002).

Are there other oxygen-regulated pathways that are, similar to HIF pathways, controlled by PHD enzymes?

# Identification of NDRG3 as a PHD2-binding protein



<u>Immunoprecipitation – Mass spectometry</u>





### Oxygen dependent expression







Regulation by the PHD2/VHL-proteasome system







Potential role of NDRG3 in angiogenesis, cell growth and survival under hypoxia but not in glycolysis







Gene set enrichment analysis

vs

NDRG3 protein expression



### NDRG3 activates hypoxic angiogenesis



**Tube forming assay** 



Matrigel plug assay

Hypoxia-inducible angiogenic gene expression

NDRG3 promotes hypoxic cell growth



MTT assay



Colony forming assay



### NDRG3 mediates hypoxic cell survival



**Apoptosis assays** 



Hypoxia-inducible anti-apoptotic gene expression





### Lactate dependence of the NDRG3 protein dynamics under hypoxia

NDRG3 accumulation





NDRG3 degradation



### Lactate dependence of the NDRG3 protein dynamics under hypoxia

NDRG3 & Lactate accumulation

NDRG3 & Lactate suppression





### NDRG3 & Lactate metabolism



### Lactate dependence of the NDRG3 protein dynamics under hypoxia

Lactate directly binds to NDRG3





### Lactate dependence of the NDRG3 protein dynamics under hypoxia

Inhibition of PHD2/VHLmediated NDRG3 modification by lactate in vitro NDRG3 interaction with PHD2 and VHL in Normoxia vs Hypoxia





### **Cell signaling mediated by NDRG3**

NDRG3 activates Raf/ERK pathway during hypoxia in a lactate-dependent manner







# Anticancer effects of inhibiting HIFs and/or NDRG3





### Lactate signaling system in hypoxia



### Hypoxia → Lactate accumulation



### Altered metabolism in cancer cells

: Aerobic glycolysis (Warburg effect)





#### **Solid tumors**



Promotion of tumor angiogenesis and tumor growth





### Lactate as a metabolic end product

- Produced in excess by muscle cells, red blood cells, brain, etc
  - AV Hill (Nobel Prize in Physiology or Medicine, 1922):
     Lactate build-up in muscle → Fatigue
- High lactate levels in blood
  - Hypoxia or abnormal blood pH
  - Pathological conditions : causing excess production or insufficient clearing of lactate from the blood
    - Sepsis, Shock, Heart attack, Heart failure, Kidney failure, Uncontrolled diabetes, Inherited metabolic or mitochondrial disorders

### **Novel functions of lactate**

#### Role in tumor development

- As an alternative fuel
- Activation of tumor angiogenesis
- Activation of tumor metastasis
- Immune suppression

#### Role in the regulation of brain functions

- Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. (2011)
- Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun. (2014)

#### Role in muscle development

 Lactate regulates myogenesis in C2C12 myoblasts in vitro. Stem Cell Res. (2014)

#### Inhibition of lipolysis

 Lactate inhibits lipolysis in fat cells through activation of an orphan Gprotein-coupled receptor, GPR81. J Biol Chem. (2009)

# Cell signaling induced by lactate (Lactate-NDRG3-c-Raf-ERK axis)

### ✓ Potential biological significance

- Normal physiology
  - Development; Pre- and post-natal
  - Exercise physiology

### - Pathology

- Cancers
- Inflammatory diseases
- Sarcopenia
- Ischemic diseases

KRIBB: Dong Chul Lee, Kyung Chan Park, Hyun Ahm Sohn,

Sangho Oh, Minho Kang, Suk-Jin Yang, Ye Jin Jang

**GIST:** Zee-Yong Park, Kyoung-min Lee

Inje Medical School: Yun Kyung Kang

### Thank you...

### Ministry of Science, ICT and Future Planning of Korea, National Research Foundation (NRF):

21C Frontier Research Program
Biomedical Technology Development Program
Senior Researcher Funding Program