Mendelian Randomization Study in CVD

Hyeon Chang Kim, MD, PhD, FAHA
Yonsei University College of Medicine, Seoul, Korea

Epidemiolgical studies in CVD

- Identified most major risk factors.
- Effectiveness of screening, diagnosis and treatment modalities
- Discovered a huge number of biomarkers
- Biomarkers for CVD
 - Causally related with disease
 - Causally NOT related with disease

Epidemiolgical studies in CVD

- Identified most major risk factors.
- Effectiveness of screening, diagnosis and treatment modalities
- Discovered a huge number of biomarkers
- Biomarkers for CVD
 - Causally related with disease: Potential prevention & treatment target
 - Causally NOT related with disease: Diagnostic or prognostic values

Causal relationship between biomarker & disease

- Extremely difficult to determine
- Randomized controlled trial (RCT) is the best solution
- RCT usually not feasible because, we cannot randomly assign biomarker levels
- Mendelian randomization study is a new alternative

Ex 1) Alcohol intake -> Depression

International Journal of Epidemiology, 2015, 526-539

doi: 10.1093/ije/dyu220

Advance Access Publication Date: 29 November 2014

Original article

Mendelian Randomization Causal Analysis

Increased alcohol consumption as a cause of alcoholism, without similar evidence for depression: a Mendelian randomization study

Marie Kim Wium-Andersen, 1,2,3 David Dynnes Ørsted, 1,2,3 Janne Schurmann Tolstrup and Børge Grønne Nordestgaard 1,2,3,5 *

Drinking - Depression

Alcohol causes depression?

Depression makes people drinking?

Third factor?

Study designs

Study population

- Copenhagen General Population Study (n = 67,650)
- Copenhagen City Heart Study (n = 10,504)

Outcome

- Depression
- Alcoholism

Covariates

• BMI, CRP, Smoking, Physical activity, Education, ...

Study designs

Exposure

- Alcohol intake by questionnaire
- Genotypes affecting alcohol intake

Genotype -> Alcohol intake

Gene-related alcohol intake -> Depression

Conclusion

Findings support that

- Increased alcohol intake may cause alcoholism.
- Increased alcohol intake does not cause depression.

Mendelian Randomization (MR) Study

- MR studies evaluate the relationship between geneticallydetermined biomarker levels and the risk of target disease.
- If the genetic determination of biomarker level is random and independent of non-genetic confounders,
- We can assume that the observed biomarker-disease relationship is similar to the relationship between randomly assigned biomarker levels and the disease risk.

Mendelian Randomization (MR) Study

- MR studies require following conditions:
- 1. The genetic variant is associated with the exposure;
- 2. The genetic variant affects the outcome only through the exposure;
- 3. The genetic variant is not related to other factors that affect the outcome.

C-reactive protein -> CHD

Fig 4 |Estimates of association of circulating concentrations and genetically raised concentrations of C reactive protein (CRP) with risk of coronary heart disease (CHD). *Corrected for regression dilution in C reactive protein and potential confounding factors.

LDL, Lp(a), TG, HDL -> CVD

HDL cholesterol -> Myocardial Infarction

	Odds ratio (95% CI) per SD increase in plasma lipid based on observational epidemiology*	Odds ratio (95% CI) per SD increase in plasma lipid conferred by genetic score†
LDL cholesterol	1.54 (1.45-1.63)	2·13 (1·69–2·69), p=2×10 ⁻¹⁰
HDL cholesterol	0.62 (0.58-0.66)	0.93 (0.68–1.26), p=0.63

^{*}Observational epidemiology estimates derived from more than 25 000 individuals from prospective cohort studies as shown in the appendix p 22. \dagger LDL genetic score consisting of 13 single nucleotide polymorphisms (SNPs) as shown in the appendix p 27; HDL genetic score consisting of 14 SNPs as shown in the appendix p 28.

Table 4: Estimate of the association of genetically raised LDL cholesterol or HDL cholesterol and risk of myocardial infarction using multiple genetic variants as instruments

Biomarker	Epidemiologic study	MR study
LDL-cholesterol	++	LDL receptor gene \rightarrow CAD (+) PCSK9 gene \rightarrow LDLC \rightarrow MI (+)
HDL-cholesterol	++	LCAT gene \rightarrow HDLC \rightarrow MI (-) Endothelial lipase gene \rightarrow HDLC \rightarrow CAD (-)
Lipoprotein(a)	+	LP(a) genes → MI (+)
Triglycerides	+	APOA5 gene \rightarrow TG \rightarrow MI (+) 44 SNPs affecting TG but not LDLC \rightarrow CAD (+)
Lp-PLA2	+	PLASG7 gene \rightarrow Lp-PLA2 \rightarrow CAD, CHD (-)
C-reactive Protein	+	Several large MR studies (-)
IL-6 receptor	+/-	IL-6R gene \rightarrow inflammation \rightarrow CAD (+)
Pentraxin 3	+	PTX3 gene \rightarrow PTX3 \rightarrow MI (-)
Fibrinogen	+/-	Meta-analysis of GWAS studies for CAD (-)
Body mass index	++	FTO, MC4R, TMEM 18 \rightarrow CAD (+)
Blood pressure	++	<u>CARDIoGRAM-CAD-GWAS</u> 30 variants affecting BP \rightarrow CAD (++) > Epi. Findings
Diabetes mellitus	++	<u>CARDIoGRAM-CAD-GWAS</u> 40 variants affecting DM \rightarrow CAD (+) < Epi. Findings
Telomere length	+	CARDIOGRAM-CAD-GWAS 7 variants affecting LTL → CAD (+)

Mendelian randomization studies in coronary artery disease. Eur Heart J. 2014;35:1917-24

Conclusions

- MR is a method that allows one to test for a causal effect from observational data in the presence of confounding factors.
- MR studies also have several inherent limitations and need to be carefully designed and interpreted. MR studies cannot replace the RCTs and other epidemiological studies.
- But, MR studies will improve our understanding of the roles of biomarkers in the development of cardiovascular disease. They will also help us identifying potential therapeutic/preventive targets among the increasingly reported biomarkers.