Reverse Wire and Other Special Techniques for Bifurcation Lesions

Chi-Jen Chang
Chang Gung Memorial Hospital
Taipei, Taiwan

Conventional wiring is hardly possibly for this branch with extremely angulated take-off.

Reverse wire technique

How to prepare the system

Reverse wire to approach the nearly occluded major D1

Reverse wire to approach the nearly occluded major D1

s/p CABG with LIMA to D1 with tight stenosis at m-LAD/DB bifurcation

Reverse wire to overcome the acute angle

Diseased and tortuous DB is still suitable for application of reverse wire

Not all procedures are straight forward

The wire tip was caught around the bifurcation

Make the tip curve more acute to overcome the anatomy

RCA CTO The morphology of distal bifurcation can not be demonstrated clearly

Conventional wiring failed to approach the PL br

Make the tip curve less acute to avoid selection to the small branch

Sometimes the reversed wire goes preferentially to the unpreferred branch

Angulated LAD after CTO segment

The reversed wire preferentially went to the septal branch

Rewiring to the LAD proper under the support of an inflated small balloon

Extremely angulated take-off of LAD distal to the major diagonal br

Antegrade and retrograde wiring failed

Reverse wire approach the angulated LAD easily

Rewiring to the LAD proper under the stable support of an inflated small balloon

Pull back technique

Pull back technique

All the branches were presered

Jailed Balloon Technique

to protect SD during stenting for the other branch

Jailed Balloon Technique: with the jailed balloon uninflated

Jailed Balloon Technique: with the jailed balloon inflated

• Stenting for Lcx to LM first to secure the LM which provides a safe platform for handling the m-LAD bifurcation lesion with acute angulation.

Balloon at LAD jailed during stenting LCX/LM

Rewiring to cross the stent struts with jailed balloon remained

Wiring for angulated LAD

Sequential stenting for LAD and LAD/LM

Successful revascularization without any branch jeopardized

Reverse wire to approach the challenging bifurcation first

Jailed balloon technique to protect DB during stenting for LAD then

Rewiring the nearly occluded DB

Culottes stentiing for the bifurcation

Conclusions

- The reverse wire technique could be helpful in approaching SBs with acutely angulated takeoff.
- For a SB of which the take-off is angulated but the curve is small, the pull back technique could be helpful.
- The jailed balloon technique could be effective in protecting the SB from acute closure during stenting for the other branch.