## LONG TERM FOLLOW-UP OF CARDIAC INVOLVEMENT OF PROGRESSIVE MUSCULAR DYSTROPHY (DUCHENNE) IN CHILDREN

Department of Pediatrics, Chonnam National University Medical School, Chonnam National University Hospital, Young Kuk Cho

#### **Overview**

Muscular Dystrophy

Pathophysiology

Diagnosis

Cardiac involvement

**ECG** 

Echocardiography

Cardiac MR

Management

Duchenne muscular dystrophy (DMD)

mutations in the dystrophin gene (DMD; locus Xp21.2)

absence of or defect : dystrophin

progressive muscle degeneration

loss of independent ambulation: 13 years

Becker muscular dystrophy

loss of ambulation over 16 years

progression is milder

X-linked dilated cardiomyopathy (XL-dCMP)

isolated cardiac phenotype

Female carriers

10%: affect cognitive and/or cardiac function

skewed X inactivation

much milder than in boys

few cases: similar severity

Duchenne muscular dystrophy (DMD)

X-linked disease

1 in 3600–6000 live male births

mildly delayed motor milestones

most are unable to run and jump properly

classic Gowers' manoeuvre

#### Dx Most: 5 years

progressive muscle strength deteriorates

wheelchair use: before teens

Respiratory, orthopaedic, and cardiac complications

without intervention: death is around 19 years

Non-progressive cognitive dysfunction





## **Pathophysiology**

The absence of dystrophin

†intracellular Ca

overproduction of NO

protein degradation, fibrosis, necrosis, activation of macrophages



#### When to suspect DMD If there is no family history: If there is a positive family history of DMD: Patient with unexplained not walking by >16-18 months; any suspicion of abnormal muscle function increase in transaminases Gowers' sign (any age, especially <5 years old) Screening for DMD: creatine kinase concentrations markedly increased Confirming the diagnosis Dystrophin deletion/duplication testing: Muscle biopsy: Not DMD: deletion or duplication mutation found dystrophin protein absent consider alternative diagnoses Genetic sequencing: mutation found Dystrophinopathy diagnosis confirmed Yes Post-diagnosis · For patients diagnosed by muscle biopsy, dystrophin genetic testing is also necessary · For patients diagnosed by genetic testing, muscle biopsy is optional to distinguish DMD from milder phenotypes · Referral to specialised multidisciplinary follow-up is needed

Lancet Neurol 2010; 9: 77-93

Genetic counselling is highly recommended for any at-risk female family members
 Patient and family support and contact with patient organisations should be offered

|                                                       | Stage 1:<br>Presymptomatic                                                                                                                                                                 | Stage 2:<br>Early ambulatory                                   | Stage 3:<br>Late ambulatory                                                    | Stage 4:<br>Early non-ambulatory                                                                                | Stage 5:<br>Late non-ambulatory                                               |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
|                                                       | Can be diagnosed<br>at this stage if creatine<br>kinase found to be<br>raised or if positive<br>family history                                                                             | Gowers' sign  Waddling gait  Might be toe walking              | Increasingly laboured gait  Losing ability to climb stairs and rise from floor | Might be able to self propel for some time  Able to maintain posture                                            | Upper limb function<br>and postural<br>maintenance is<br>increasingly limited |  |  |
|                                                       | Might show<br>developmental<br>delay but no gait<br>disturbance                                                                                                                            | Can climb stairs                                               |                                                                                | Might develop scoliosis                                                                                         |                                                                               |  |  |
| Diagnostics                                           | Diagnostic examination and g                                                                                                                                                               | enetic counselling                                             |                                                                                | d by this stage unless delayed<br>, concomitant pathology)                                                      |                                                                               |  |  |
| Neuromuscular                                         | Anticipatory planning for future developments                                                                                                                                              | Continue assessment to interpretation of diagno                | ensure course of disease is as expect<br>stic testing                          | ted in conjunction with                                                                                         |                                                                               |  |  |
| management                                            | Ensure immunisation schedule is complete                                                                                                                                                   |                                                                |                                                                                |                                                                                                                 |                                                                               |  |  |
| Orthopaedic management                                | Orthopaedic surgery rarely neo                                                                                                                                                             | cessary                                                        | Consider surgical options<br>for TA contractures<br>in certain situations      | Monitor for scoliosis: in<br>posterior spinal fusion i<br>Possible intervention fo<br>for wheelchair positioni  | n defined situations<br>or foot position                                      |  |  |
|                                                       |                                                                                                                                                                                            |                                                                |                                                                                |                                                                                                                 | 5                                                                             |  |  |
| Rehabilitation management                             | Education and support<br>Preventive measures to maint<br>extensibility/minimise contrac<br>Encouragement of appropriat<br>Support for function and parti<br>Provision of adaptive devices, | cture<br>e exercise/activity<br>cipation                       |                                                                                | easures<br>ite wheelchair and seating, and aid<br>dependence in ADL, function, and                              |                                                                               |  |  |
| Pulmann                                               | Normal respiratory function                                                                                                                                                                | Low risk of re                                                 | spiratory problems                                                             | Increasing risk of respiratory impairment                                                                       | High risk of respiratory impairment                                           |  |  |
| Pulmonary<br>management                               | Ensure usual immunisation schedule includes 23-valent pneumococcal and influenza vaccines                                                                                                  | Monitor                                                        | progress                                                                       | Trigger respiratory assessments                                                                                 | Trigger respiratory investigations and interventions                          |  |  |
| Cardiac management                                    | Echocardiagram at<br>diagnosis or by age<br>6 years                                                                                                                                        | between investigations until age 10 years, annually thereafter |                                                                                | eyounger group<br>problems with age; requires intervention<br>lure interventions with deterioration of function |                                                                               |  |  |
| GI, speech/<br>swallowing,<br>nutrition<br>management |                                                                                                                                                                                            | Monitor for normal w<br>Nutritional assessmen                  | eight gain for age<br>it for over/underweight                                  |                                                                                                                 | Attention to possible dysphagia                                               |  |  |
|                                                       |                                                                                                                                                                                            |                                                                |                                                                                |                                                                                                                 |                                                                               |  |  |
| Psychosocial management                               | Family support, early<br>assessment/intervention<br>for development,<br>learning, and behaviour                                                                                            |                                                                | vention for learning, behaviour, and<br>dence and social development           |                                                                                                                 | Transition planning to adult services                                         |  |  |
|                                                       |                                                                                                                                                                                            |                                                                |                                                                                | ancet Neurol                                                                                                    | 2010; 9: 77–93                                                                |  |  |



# Progressive cardiac involvement in patients with Duchenne/ Becker muscular dystrophy



## Progressive cardiac involvement in patients with Duchenne/ Becker muscular dystrophy

Cardiomyopathy

asymptomatic in childhood & early teens

small subset - end-stage heart failure : 18 years

The disease progresses over time

variable onset of arrhythmias

ventricular dysfunction

ECG abnormalities: early in the disease & progress with age

Sinus tachycardia

frequency - disease duration & systolic dysfunction

before onset of systolic dysfunction

## Progressive cardiac involvement in patients with Duchenne/ Becker muscular dystrophy

Early cardiomyopathy

hypertrophy of cardiomyocytes→ atrophy and fibrosis

Subendocardial fibrosis & fatty replacement - posterobasal LV & lat. wall

Cardiomyopathy

diastolic dysfunction → eccentric hypertrophy

Progressive dilatation of the ventricles and atria

thinning of the ventricular walls, systolic dysfunction

Ventricular arrhythmias

cardiac and respiratory function: important relationship

adequate respiratory fx → positive effect on cardiac fx

Heart failure: 40% of the deaths of DMD

### **ECG** – cardiac involvement

R:S ratio ≥1 in lead V1,
deep Q waves in leads I, aVL, V5–V6,
sinus tachycardia,
right axis deviation
complete right bundle branch block



progressive left ventricular (LV) expansion

impaired systolic function

some : rapid and lethal development (< 4 years)

Wall motion abnormalities

posterior and lateral wall segments

Impaired diastolic fx in normal systolic fx



Heart. 2012;98(5):420-429.

myocardial velocity and deformation imaging

although normal systolic fx

significant reductions in radial & longitudinal peak systolic strain

↓ early diastolic myocardial velocities in the lateral LV wall

LV systolic dysfunction

adverse prognostic



### Cardiovascular Magnetic Resonance Imaging

Cine-imaging and CMR tagging

accurate and rapid measurement

of regional transmural myocardial deformation

over the entire cardiac cycle



6):420-429.

#### **Contrast enhanced CMR (ceCMR)**

Late gadolinium enhancement (LGE)

indicative of myocardial damage

free LV lateral wall: m. c.

BMD subepicardium of the inferolateral wall in the third decade of life age dependent increase

CMR is more sensitive in detecting pathological findings

>>ECG and conventional echocardiography,



Heart. 2012;98(5):420-429.

### **Timing of Cardiac Studies**

DMD - ECG and echocardiography
at diagnosis, every 2 years to age 10,
and annually after age 10
additional CMR study : > 6Yr, >20 kg

BMD - ECG and echocardiography
at diagnosis, every 5 years in normal
comprehensive CMR study at diagnosis
least every second year

Female carriers of MD

at diagnosis, every 5 years in normal

CMR: tool to diagnose & identify the pattern of cardiomyopathy

#### Management



#### Management



#### Steroid treatment

#### Starting GCs

#### Prednisone

0.75 mg/kg/day
First line unless pre-existing weight and/or
behavioural issues favour deflazacort

#### Deflazacort

0.9 mg/kg/day Consider as first line when pre-existing weight and/or behavioural issues

#### Age <2 years

Improving (typical): GC initiation not recommended Plateau (uncommon): monitor closely Decline (atypical): consider alternative diagnoses/concomitant pathology

#### Age 2-5 years

Improving: GC initiation not recommended Plateau: GC initiation recommended Decline: GC initiation highly recommended

#### Age ≥6 years

Improving (uncommon): consider BMD Plateau: GC initiation highly recommended Decline: GC initiation highly recommended Non-ambulatory: refer to text

- · Consider age, function (improving, plateau, declining), pre-existing risk factors, physician relationship with family
- Ensure immunisation schedule is complete before initiating GCs

#### **Steroid treatment**



#### **Alternative steroid treatment**

|                      | Prednisone dose*                                                        | Deflazacort dose*                                                    | Comments                                                                                                                                                                         |
|----------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate day        | 0.75–1.25 mg/kg every<br>other day                                      | 2 mg/kg every other day                                              | Less effective but consider when a daily schedule has side-effects that are not effectively managed or tolerated                                                                 |
| High-dose<br>weekend | 5 mg/kg given each Friday<br>and Saturday                               | Not yet tested                                                       | Less data on effectiveness as compared to a daily schedule<br>Consider as an alternative to daily treatment, especially if<br>weight gain and behavioural issues are problematic |
| Intermittent         | 0.75 mg/kg for 10 days<br>alternating with<br>10–20 days off medication | 0.6 mg/kg on days 1–20<br>and none for the<br>remainder of the month | Less effective but has fewer side-effects<br>Consider as the least effective but possibly best tolerated<br>regimen before abandoning steroid treatment altogether               |

 $\mathsf{GC}\text{-}\mathsf{glucocorticoid.}\ \mathsf{*No}\ \mathsf{set}\ \mathsf{dose}\ \mathsf{ranges}\ \mathsf{have}\ \mathsf{been}\ \mathsf{clearly}\ \mathsf{accepted}\ \mathsf{as}\ \mathsf{optimum}.$ 

Table 3: Alternative GC dosing strategies



| Table 1   Experimental therapies for cardiac involvement in animal models of dystrophinopathies |                                |                                                  |                                                                                                             |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| Method                                                                                          | Effect                         | Model                                            | Reference                                                                                                   |  |  |  |
| Pharmacological                                                                                 |                                |                                                  |                                                                                                             |  |  |  |
| Bradykinin                                                                                      | Restores heart failure         | Golden retriever dog model of muscular dystrophy | Su, J. B. et al. (2012) <sup>133</sup>                                                                      |  |  |  |
| Losartan                                                                                        | Blocks TGF-β signalling        | Dmd <sup>mdx</sup> mice                          | Chamberlain, J. S. (2007) <sup>134</sup>                                                                    |  |  |  |
| Osteopontin                                                                                     | Immunomodulation               | Dmd <sup>mdx</sup> mice                          | Dahiya, S. et al. (2011) <sup>135</sup>                                                                     |  |  |  |
| Polaxomer                                                                                       | Reduction of fibrosis          | Golden retriever dog model of muscular dystrophy | Townsend, D. et al. (2010) <sup>136</sup>                                                                   |  |  |  |
| Resveratrol                                                                                     | p300 protein modulation        | <i>Dmd<sup>mdx</sup></i> mice                    | Kuno, A. et al. (2013) <sup>137</sup> and Hori, Y. S. et al. (2011) <sup>138</sup>                          |  |  |  |
| Sildenafil                                                                                      | Cardioprotection               | Dmd <sup>mdx</sup> mice                          | Adamo, C. M. et al. (2010) <sup>139</sup>                                                                   |  |  |  |
| SNT-MC17/idebenone                                                                              | Corrects diastolic dysfunction | Dmd <sup>mdx</sup> mice                          | Buyse, G. M. et al. (2009) <sup>140</sup>                                                                   |  |  |  |
| Suramin                                                                                         | Attenuates cardiomyopathy      | Dmd <sup>mdx</sup> mice                          | de Oliveira Moreira, D. et al. (2013) <sup>141</sup>                                                        |  |  |  |
| Molecular                                                                                       |                                |                                                  |                                                                                                             |  |  |  |
| AAV-mediated transfer of microdystrophin                                                        | Gene transfer                  | <i>Dmd<sup>mdx</sup></i> mice                    | Bostick, B. <i>et al.</i> (2012) <sup>142</sup> and Kleinschmidt, J. A. <i>et al.</i> (2012) <sup>143</sup> |  |  |  |
| AAV-mediated transfer of microdystrophin                                                        | Gene transfer                  | Hamster                                          | Vitiello, C. et al. (2009) <sup>144</sup>                                                                   |  |  |  |
| Aminoglycosides                                                                                 | Ribosomal readthrough          | <i>Dmd<sup>mdx</sup></i> mice                    | Wagner, K. R. et al. (2001) <sup>129</sup> and Kimura, S. et al. (2005) <sup>145</sup>                      |  |  |  |
| Ataluren                                                                                        | Exon skipping                  | Mice                                             | Beytía Mde, L. et al. (2012) <sup>146</sup>                                                                 |  |  |  |
| RTC13, RTC14                                                                                    | Ribosomal readthrough          | Dmd <sup>mdx</sup> mice                          | Kayali, R. et al. (2012) <sup>128</sup>                                                                     |  |  |  |
| Dystrophin surrogates (alternative gene upregulation)                                           |                                |                                                  |                                                                                                             |  |  |  |
| Arginine butyrate                                                                               | Utrophin upregulation          | Dmd <sup>mdx</sup> mice                          | Vianello, S. <i>et al.</i> (2013) <sup>130</sup>                                                            |  |  |  |
| Recombinant AAV                                                                                 | Expression of claudin-5        | Mice                                             | Delfín, D. A. et al. (2012) <sup>147</sup>                                                                  |  |  |  |
| Other                                                                                           |                                |                                                  |                                                                                                             |  |  |  |
| Stem cells                                                                                      | Stem-cell transplantation      | Dmd <sup>mdx</sup> mice                          | Chun, J. L. et al. (2013) <sup>132</sup>                                                                    |  |  |  |

Stem cells Stem-cell transplantation Dmd<sup>mdx</sup> mice Chun, J. L. et al. (2013)<sup>132</sup>

Abbreviations: AAV, adeno-associated virus; RTC, readthrough compound; TGF-β, transforming growth factor βNat. Rev. Cardiol. 11, 168–179 (2)

#### Sidenifil for DMD mouse



#### 해외뉴스

#### 미FDA, 희귀근육병 치료제 개발시에 비우처 지급

신속심사 이용권...타사 판매도 가능해



발행 2015.08.24 12:28:13















혁신적인 RNA표적 치료법의 개발사인 사렙타 테라퓨틱스(Sarepta Therapeutics)는 미국 FDA가 51번 엑손 스키핑으로 치료할 수 있는 듀센형 근이영양증(Duchenne Muscular Dystrophy, DMD) 환자를 위 한 약물이 될 가능성이 있는 메테플러센(eteplirsen)을 희귀 소아질환 신속심사 대상으로 지점했다고 발표했다.

희귀 소아질환 약물 지정은 이전에 FDA가 메테플러센을 희귀의약품과 패스트트랙 대상으로 인정한 결 정을 보완하게 된다.

사렙타의 최고의료책임자인 메드워드 케이 박사는 "FDA의 희귀의약품 개발부에서 메테플러센을 희귀 소아질환 약물로 지정한 것에 기뻐하고 있다"고 말하며 "FDA가 자사의 핵심 중점 분야인 희귀 소아질 환 치료제의 개발을 촉진하기 위해 희귀 소아질환 신속심사 바무처 프로그램을 고안한 것에 감사한다" 고 밝혔다.

또 이를 통해 치료제가 절실하게 필요한 소아에게 신속하게 제품을 제공할 수 있길 바라고 있다고 덧 붙였다.

메테플러센은 정상적인 디스트로핀 단백질 생성을 가능하게 해 듀센형 근이영양증의 근본적인 원인에 대용하도록 만들어진 시험약이다. 현재까지 임상시험에서는 긍정적인 안전성 및 내약성 프로파일이 입

#### **Summary I**

- Muscular dystrophy type Duchenne (DMD) and type Becker (BMD)
   X-linked genetic diseases
- Progressive cardiomyopathy
   major cause of morbidity and mortality
- Cardiac involvement
   myocardial damage
  - starting from the epicardial third of the inferolateral wall
  - → extension in contiguous segments
  - → dilated cardiomyopathy or sudden cardiac death

#### **Summary II**

- Typical ECG abnormalities: R:S ratio ≥1 in lead V1, deep Q waves in leads I, aVL, V5–V6, sinus tachycardia
   RAD, CRBBB
- Echocardiography: myocardial velocity and deformation imaging subtle cardiac abnormalities cardiac involvement at early disease stages important prognostic information
- Multi-parametric CMR
   both subtle functional & morphological abnormalities
   for cardiac disease progression & therapy monitoring

#### **Summary III**

Heart failure treatment

ACE inhibitors, ß-blockers, and diuretics beneficial ventricular remodelling improvement in LV systolic function

Medical treatment

steroids, cardiac resynchronisation, ICD implantation cardiac transplantation

consider in rapidly worsening cardiac function