

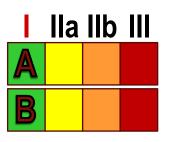
계명대학교 동산의료원 Keimyung University Dongsan Medical Center

General Principle of HF Device Therapy, Beyond Guidelines

Seongwook Han, MD.PhD.

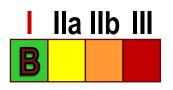
Professor of Medicine, Keimyung University School of Medicine Arrhythmia Service, Cardiology, Dongsan Medical Center

Disclosure


- Served as a speaker or a consultant: Bayer, Biosense Webster, Boehringer Ingelheim, Boston Scientific, Bristol-Myers Squibb, Daiichi-Sankyo, Pfizer, Servier, St. Jude Medical
- > Received research grants: Servier, Yuhan
- Served as a member of advisory board: Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Pfizer, Boston Scientific, Daiichi-Sankyo

I IIa IIb III

ICD therapy is recommended for *primary prevention* of SCD in selected patients with *HFrEF* at least 40 d post-MI with *LV EF* \leq 35% and NYHA class *II or III* symptoms on chronic GDMT*, who are expected to live >1 y


CRT is indicated for patients who have *LVEF* ≤ 35% , sinus rhythm, *LBBB* with a *QRS* ≥ 150 ms, & *NYHA* class II, III, or ambulatory IV symptoms on GDMT*

*Guideline-Directed Medical Therapy

Keimyung University Dongsan Medical Center

ICD therapy is recommended for *primary prevention* of SCD in selected patients with HFrEF at least 40 d post-MI with LV EF $\leq 30\%$ and NYHA class I symptoms while receiving GDMT, who are expected to live >1 y

I IIa IIb III

CRT can be useful for patients who have $LV EF \leq$ 35%, sinus rhythm, a non-LBBB pattern with a QRS \geq 150 ms & NYHA class III/ambulatory IV symptoms on GDMT

I IIa IIb III B

CRT can be useful for patients who have LV EF ≤ 35%, sinus rhythm, LBBB with a QRS 120 to 149 ms, & NYHA class II, III, or ambulatory IV symptoms on GDMT

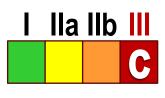
CRT can be useful in patients with AF and LV EF ≤ 35% on GDMT if a) the patient requires ventricular pacing or otherwise meets CRT criteria and b) atrioventricular nodal ablation or rate control allows near 100% ventricular pacing with CRT

CRT can be useful for patients on GDMT who have $LVEF \leq 35\%$, & are undergoing placement of a new or replacement device implantation with anticipated *ventricular pacing (>40%)*

An ICD is of *uncertain benefit* to prolong meaningful survival in patients with a *high risk of non-sudden death* such as frequent hospitalizations, frailty, or severe comorbidities

CRT may be considered for patients who have *LV EF* ≤35%, sinus rhythm, a non-LBBB with a QRS 120 to 149 ms, and NYHA class *III/ambulatory IV* on GDMT

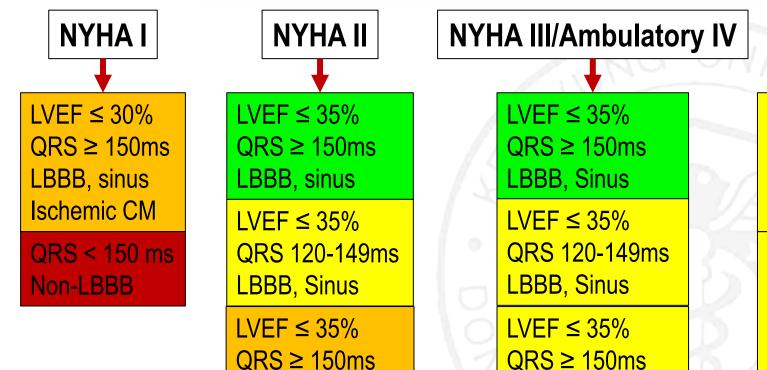
CRT may be considered for patients who have *LV EF* ≤35%, sinus rhythm, a non-LBBB with a QRS ≥150 ms, and NYHA class II symptoms on GDMT


I lla llb lll C
CRT may be considered for patients who have LV EF ≤30%, ischemic etiology of HF, sinus rhythm, LBBB with QRS ≥150 ms, and NYHA class I symptoms on GDMT

I IIa IIb III B

CRT is not recommended for patients with NYHA *class I or II* symptoms and *non-LBBB* with a *QRS* <150 ms

CRT is not indicated for patients whose comorbidities and/or frailty limit survival to <1 y



Non-LBBB, Sinus

QRS 120-149ms

Non-LBBB, Sinus

 $LVEF \leq 35\%$

Non-LBBB, sinus

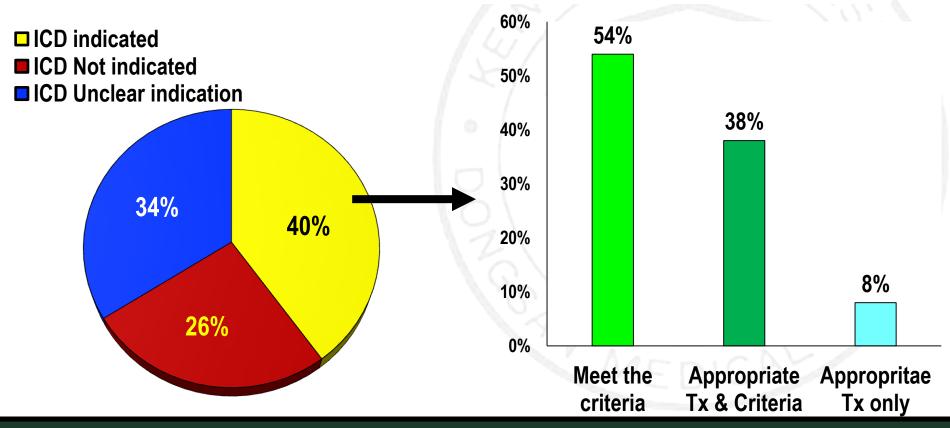
 $QRS \le 150ms$

Non-LBBB

Anticipated to require frequent ventricular pacing (>40%) AF, if ventricular pacing is required & rate control will result in near 100% ventricular pacing with CRT

Special Ix

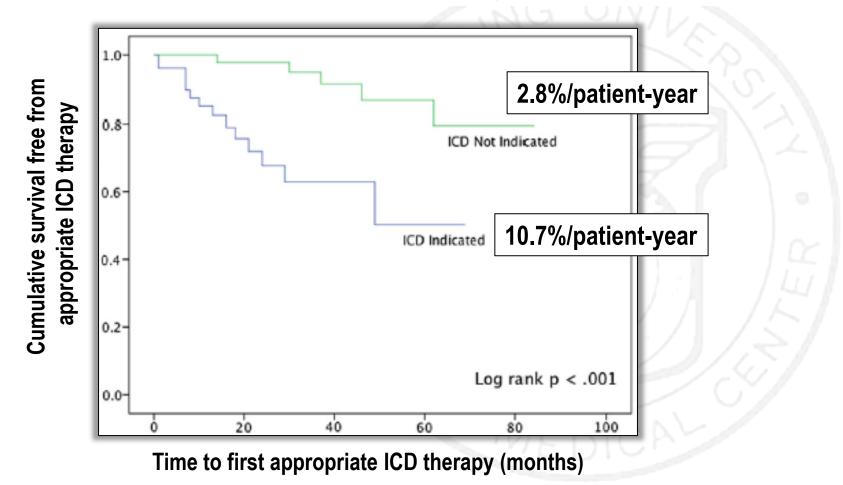
KUDMC



Keimyung University Dongsan Medical Center

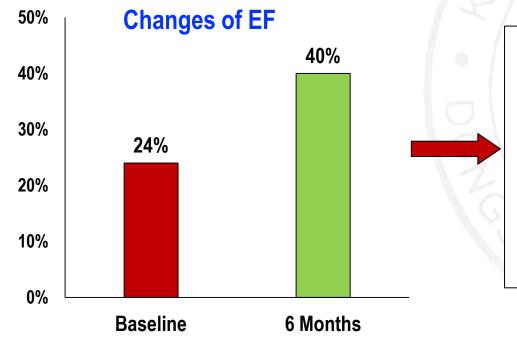
Yancy CW, et al. Circulation 2013;128:e240

Appropriateness of Primary Prevention ICDs at the Time of Generator Replacement


- To determine how often patients with 1° prevention ICD meets guideline-derived indications at the time of generator replacement
- > 231 patients from 2 VA hospitals in the US: Retrospective review

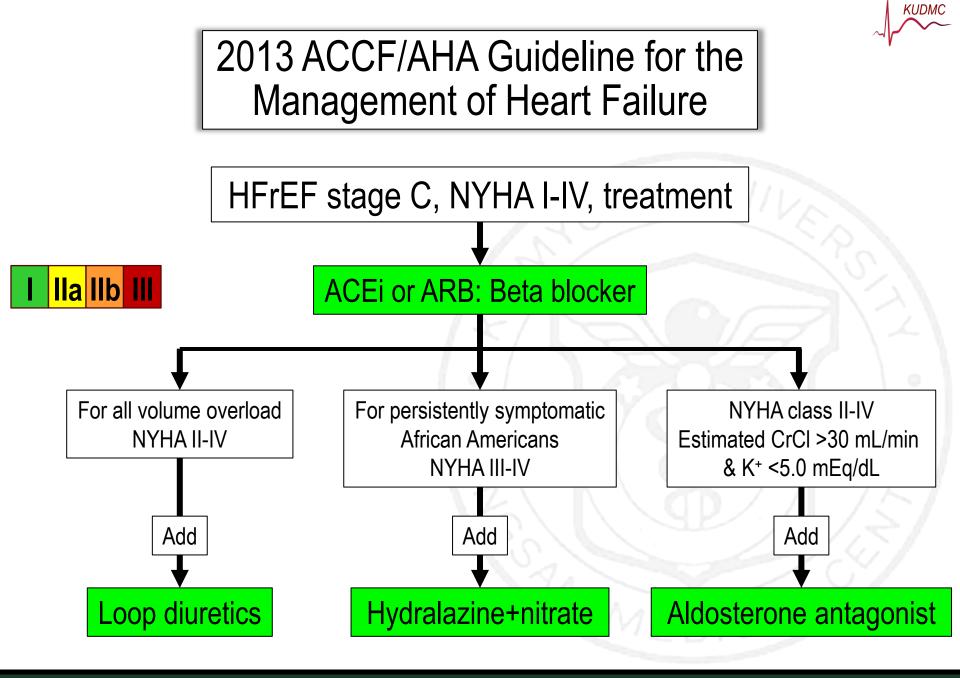
Appropriateness of Primary Prevention ICDs at the Time of Generator Replacement

Subsequent ICD therapies after elective generator replacement



Appropriateness of Primary Prevention ICDs at the Time of Generator Replacement

- Baseline LVEF of 30-35% (compared with LVEF of < 30%) was the only significant characteristic associated with a lower likelihood of meeting primary prevention ICD criteria at the time of generator replacement (OR: 0.52; 95% CI: 0.3 to 0.88; p=0.01)</p>
- Patients with ICM tended to be more likely than patients with NICM to meet criteria for ICD at the time of generator replacement (OR: 1.89; 95% CII: 0.90 to 3.95; p=0.09)


Clinical and Demographic Predictors of Outcomes in Recent Onset DCM: *IMAC-2*

- To determine clinical predictors of recovery of LV fx of recent onset CM
- ✤ 373 patients with LV EF ≤ 40% & ≤ 6 mo duration of symptoms
- 10% Peripartum CM, 12% cardiac biopsy (inflammation 4%, myocarditis 2.6%)
- ACEi/ARB 91→92%; Beta blocker 82→94%@6 mo: A total of 4 yr FU

70% of patients had an absolute increase in LV EF of 10%

25% had complete or nearcomplete (LVEF > 50%) resolution of their CM

Keimyung University Dongsan Medical Center

Yancy CW, et al. Circulation 2013;128:e240

Things to Remember

GDMT (Guideline Directed Medical Therapy)

- Combination of an ACE inhibitor or ARB and beta blocker therapy adjusted to target doses as tolerated, with diuretics adjusted (the addition of aldosterone antagonists)
- Clinical improvement during the *first 3 to 6 months*
- GDMT should be provided for at least 3 months before planned reassessment of LV function to consider device implantation

Things to Remember

ICD implantation < 9 months from the initial Dx of NICM

Implantation of an ICD for primary prevention is not recommended within the first 3 months after initial diagnosis of NICM

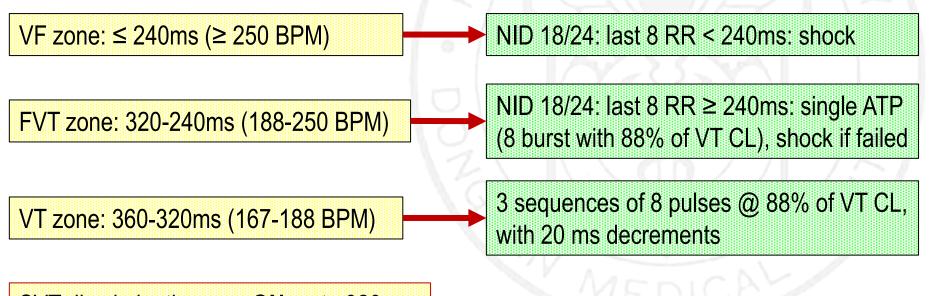
In patients with NICM < 9 months it is generally prudent to delay ICD until the full effect of medical therapy can be evaluated

Things to Remember

ICD implantation within 90 days of revascularization

- Survival benefit with an ICD within the first 90 days after revascularization is lacking from the large, randomized, primary prevention trials
 - ✓ MADIT: excluded ≤ 2 mo after CABG, ≤ 3 mo after PTCA
 - ✓ MADIT II: excluded \leq 3 mo after revascularization
- MADIT II: ICD was of benefit only at least 6 mo after revascularization
- CABG in patients with reduced LV EF: 30% improved LV function on 9-12 Mo after surgery¹

~ KUDMC


Consequences of Frequent Shocks

- Posttraumatic stress syndrome
- Decrease quality of life
- Acceleration of heart failure
- ➢ Proarrhythmia (rare)
- Mortality ? shock cause this increase or simply marker of risk is unknown

Pacing Fast Ventricular Tachycardia Reduces Shock Therapies (*PAINFREE II Rx*) Trial

- ✤ ATP terminates 78~94% of VTs <188-200 BPM with acceleration risk (2-4%)</p>
- Fast VT (>200 BPM) is often treated by shock d/t safety concern
- ✤ 634 ICD patients randomized to ATP (n=313) vs shock (n=321)
- ✤ Efficacy, safety, QoL with Tx @ 11.2±3 Months FU

SVT discrimination was **ON** up to 320 ms

Pacing Fast Ventricular Tachycardia Reduces Shock Therapies (PAINFREE II Rx) Trial Shocked 140 Spontaneous Termination **VF 10%** 120 # of episodes 100 FVT VT Shock Arm 32% 58% 34% 80 147 episodes 60 64% 40 2% 20 0 **ATP Failed** <200 200 220 240 260 280 300 320 340 360 380 400 420 440 >460 28% Median Cycle Length (ms) **ATP Success** 72% **ATP Arm** (284 episodes)

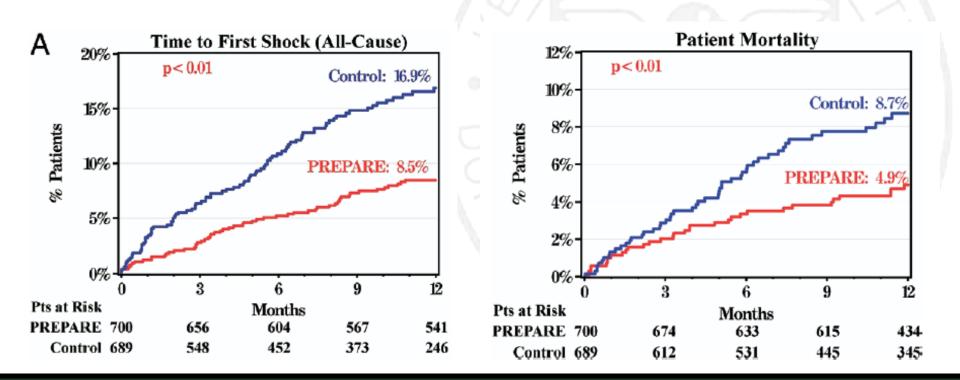
Wathen MS, et al. Circulation 2004;110:2591

KUDMC

Keimyung University Dongsan Medical Center

Pacing Fast Ventricular Tachycardia Reduces Shock Therapies (*PAINFREE II Rx*) Trial

- FVT: 32% of ventricular tachyarrhythmias & 76% of those that would be detected as VF & shocked with traditional ICD programming
- Acceleration, episode duration, syncope, and sudden death were similar between arms
- Conclusions Compared with shocks, empirical ATP for FVT is highly effective, is equally safe, and improves quality of life. ATP may be the preferred FVT therapy in most ICD patients


Strategic Programming of Detection and Therapy Parameters In ICD Reduces in Shock in Primary Prevention Patients **PREPARE**

 700 patients with primary prevention ICD: Followed for 1 year
 Control group: EMPIRIC & MIRACLE ICD trials
 NID: 30 of 40, ATP is the first Tx for FVT (182-250 BPM), SVT discriminators were used for <200 BPM (300ms)

Table	Table 1 PREPARE VT/VF Programming Parameters							
Detection		Threshold	Beats to Detect	Therapies				
VF	On	250 beats/min	30 of 40	30 to 35 J (max output) $ imes$ 6				
FVT	via VF	ia VF 182 beats/min 30 o		Burst (1 sequence), 30 to 35 J (max output) $ imes$ 5				
VT	Monitor	167 beats/min	32	Off				

Strategic Programming of Detection and Therapy Parameters In ICD Reduces in Shock in Primary Prevention Patients **PREPARE**

Conclusions Strategically chosen VT/VF detection and therapy parameters *can safely reduce shocks and other morbidities* associated with ICD therapy in patients receiving an ICD for primary prevention indications

Keimyung University Dongsan Medical Center

Wilkoff BL, et al. JACC 2008;52:541

~ KUDMC

CONTEMPORARY REVIEW

Implantable cardioverter-defibrillator shock prevention does not reduce mortality: A systemic review

Andrew H. Ha, MD,^{*} Inje Ham, BSc,^{*} Girish M. Nair, MBBS,[†] Stuart J. Connolly, MD,[†] Paul Dorian, MD,[‡] Carlos A. Morillo, MD, FHRS,[†] Jeff S. Healey, MD, MSc, FHRS[†]

Meta analysis with trials assessing the efficacy of intervention to prevent ICD shocks

✤ 5875 patients from 17 randomized trials

Implantable cardioverter-defibrillator shock prevention does not reduce mortality: A systemic review

Shock reductions were achieved by AAA & Catheter ablation

Study	-				
	Treatment	Control	OR (random)	Weight	OR (random)
or sub-category	n/N	n/N	95% CI	%	95% CI
01 Anti-Arrhythmic Medication Tr	ials				
Seidl	19/35	7/35		4.36	4.75 [1.64, 13.74]
Kuhlkamp	15/46	24/47		5.41	0.46 [0.20, 1.08]
Pacifico	45/151	73/151		7.50	0.45 [0.28, 0.73]
Kettering	16/50	19/50		5.50	0.77 [0.34, 1.75]
SHIELD	197/419	113/214		8.26	0.79 [0.57, 1.10]
Singer	31/135	27/37	←	5.48	0.11 [0.05, 0.25]
OPTIC	38/274	42/138	_ _	7.36	0.37 [0.22, 0.61]
ALPHEE	137/377	46/109		7.72	0.78 [0.51, 1.21]
Subtotal (95% CI)	1487	781		51.59	0.59 [0.36, 0.96]
Total events: 498 (Treatment), 38	51 (Control)				
Test for heterogeneity: Chi2 = 40	.51, df = 7 (P < 0.00001),	F = 82.7%			
Test for overall effect: Z = 2.14	(P = 0.03)				
02 Catheter Ablation of Ventricul	ar Tachycardia Trials				
SMASH-VT	6/64	20/64	←−−	4.66	0.23 [0.08, 0.61]
Koa-Wing (abstract)	3/12	4/9	· · · · · · · · · · · · · · · · · · ·	2.10	0.42 [0.07, 2.66]
V-Tach	17/52	29/55	·	5.71	0.44 [0.20, 0.95]
Subtotal (95% CI)	128	128		12.48	0.35 [0.19, 0.62]
Total events: 26 (Treatment), 53	(Control)				
Test for heterogeneity: Chi2 = 1.0	06, df = 2 (P = 0.59), P = 0	%			
Test for overall effect: Z = 3.56	(P = 0.0004)				
03 ICD Programming Trials					
PAINFREE-II	21/313	51/321		7.15	0.38 [0.22, 0.65]
EMPIRIC	81/445	87/455		8.23	0.94 [0.67, 1.32]
PITAGORA	8/103	11/103		4.84	0.70 [0.27, 1.83]
ADVANCE-CRTD	41/266	47/260		7.58	0.83 [0.52, 1.31]
ADVANCE-D	75/450	66/475	+	8.12	1.24 [0.87, 1.78]
			0.1 0.2 0.5 1 2 5	10	
			Favours treatment Favours control	bl	

Keimyung University Dongsan Medical Center

Ha AH, et al. Heart Rhythm 2012;9:2068

Implantable cardioverter-defibrillator shock prevention does not reduce mortality: A systemic review

No significant reduction in mortality

Study or sub-category	Treatment n/N	Control n/N	OR (fixed) 95% CI	Weight %	OR (fixed) 95% CI
01 Anti-Arrhythmic Medicatio	n Trials	10.7% P			
Seidl	6/35	3/35		1.58	2.21 [0.51, 9.64]
Kuhlkamp	4/46	4/47		2.30	1.02 (0.24, 4.36)
OToole	2/75	4/85		2.32	0.55 [0.10, 3.12]
Pacifico	4/151	7/151	·	4.33	0.56 (0.16, 1.95)
Kettering	6/50	8/50		4.48	0.72 [0.23, 2.24]
SHIELD	13/419	7/214		5.71	0.95 [0.37, 2.41]
Singer	2/135	3/37	← ■	2.95	0.17 [0.03, 1.06]
OPTIC	10/274	2/138		1.63	2.58 [0.56, 11.92]
ALPHEE	37/377	6/109		5.34	1.87 [0.77, 4.55]
Subtotal (95% CI)	1562	866	-	30.65	1.07 [0.72, 1.59]
Total events: 84 (Treatment).			T		
Test for overall effect: Z = 0.					
02 Catheter Ablation of Ventr					
SMASH-VT	6/64	11/64		6.34	0.50 (0.17, 1.44]
Koa-Wing (abstract)	0/12	0/9			Not estimable
V-Tach	5/52	4/55		2.24	1.36 (0.34, 5.36)
Subtotal (95% CI)	128	128		8.58	0.72 [0.32, 1.64]
Total events: 11 (Treatment),		74/			
Test for overall effect: Z = 0.	= 1.28, df = 1 (P = 0.26), P = 21. 78 (P = 0.44)	/ %			
03 ICD Programming Trials					
PAINFREE-I	32/313	24/321		13.53	1.41 [0.81, 2.45]
EMPIRIC	24/445	30/455		17.85	0.81 (0.46, 1.40)
PITAGORA	8/103	6/103		3.52	1.36 [0.46, 4.07]
ADVANCE-CRTD	18/266	13/260		7.80	1.38 [0.66, 2.88]
ADVANCE-D	26/450	31/475		18.08	0.88 (0.51, 1.50)
					· · · · · · · · · · · · · · · · · · ·
		(0.1 0.2 0.5 1 2 5	5 10	
			Favours treatment Favours con	trol	

Keimyung University Dongsan Medical Center

Ha AH, et al. Heart Rhythm 2012;9:2068

CONTEMPORARY REVIEW

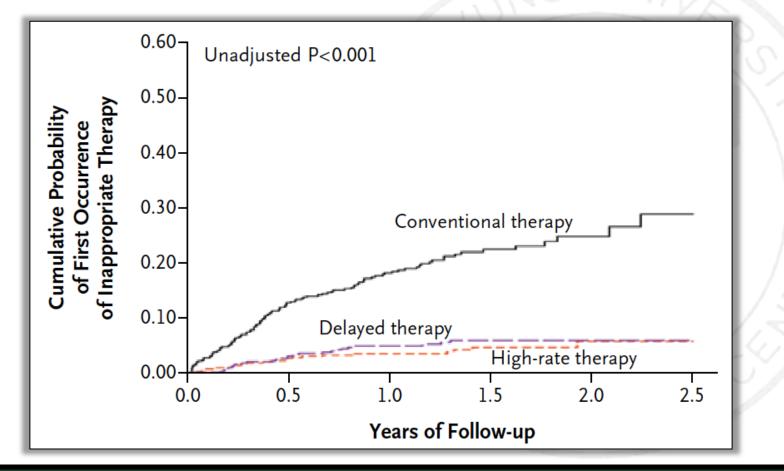
Implantable cardioverter-defibrillator shock prevention does not reduce mortality: A systemic review

Andrew H. Ha, MD,^{*} Inje Ham, BSc,^{*} Girish M. Nair, MBBS,[†] Stuart J. Connolly, MD,[†] Paul Dorian, MD,[‡] Carlos A. Morillo, MD, FHRS,[†] Jeff S. Healey, MD, MSc, FHRS[†]

ICD programming trials had sufficiently heterogeneous intervention that pooling of their results was not performed
 Only PAINFREE II trial reduced ICD shocks (OR 0.38, 95% CI 0.22-0.65) but not mortality (OR 0.41, 95% CI 0.81-2.45)

Conclusion: There is *no compelling evidence that existing interventions that reduce ICD shocks significantly improve survival*

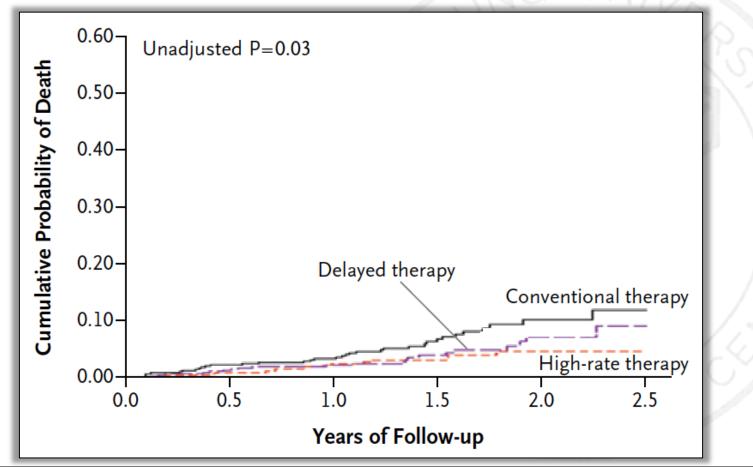
- ✤ 1500 patients with a primary-prevention indication
- Randomized, 3-arm study of patients randomized 1:1:1 to either conventional, high-rate cutoff, or duration-delay programming
- Primary endpoint: first episode of inappropriate therapy (shock or ATP)
- Secondary endpoint: All cause mortality, syncope


MADIT-RIT: ICD Programming

Arm A (Conventional)	Arm B (High-rate)	Arm C (Duration-delay)
Zone 1	Zone 1	Zone 1
<u>></u> 170 bpm, 2.5s delay	170 bpm	<u>></u> 170 bpm, 60s delay
Onset/Stability Detection Enhancements ON	Monitor only	Rhythm ID [®] Detection Enhancements ON
ATP + Shock		ATP + Shock
Zone 2	Zone 2	Zone 2
<u>></u> 200 bpm, 1s delay	<u>></u> 200 bpm, 2.5s delay	<u>></u> 200 bpm, 12s delay
Quick Convert [™] ATP	Quick Convert [™] ATP	Rhythm ID [®] Detection
		Enhancements ON
Shock	Shock	ATP + Shock
		Zone 3
		N250 hnm 2 5c dalay

≥250 bpm, 2.5s delay
 Quick Convert[™] ATP + Shock

Moss AJ, et al. NEJM 2012;367:2275

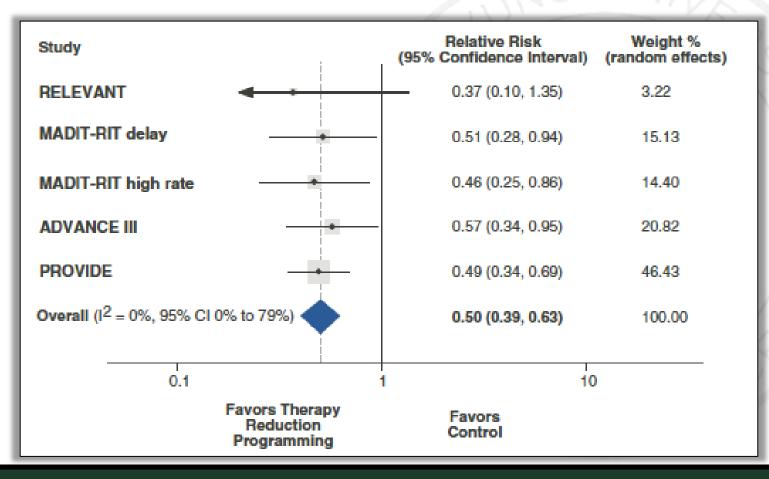

Cumulative Probability of First Occurrence of Inappropriate Tx

Keimyung University Dongsan Medical Center

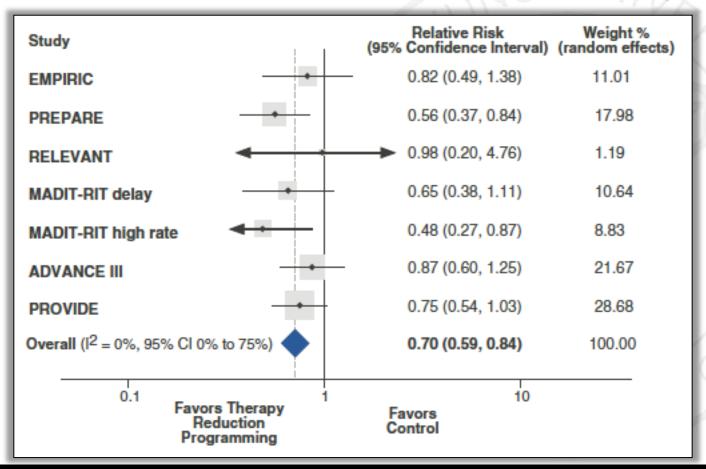
Moss AJ, et al. NEJM 2012;367:2275

Cumulative Probability of Death

Moss AJ, et al. NEJM 2012;367:2275


Table 3. Hazard Ratios for a First Occurrence of Inappropriate Therapy, Death, and a First Episode of Syncope According to Treatment Group.							
Variable	Conventional Therapy (N = 514)	High-Rate Therapy (N=500)	Delayed Therapy (N = 486)	High-Rate Therapy vs. Conventional Therapy		<mark>Delayed Therapy</mark> vs. Conventional Therapy	
		of potients		Hazard Ratio (95% CI)	P Value	Hazard Ratio (95% CI)	P Value
		o. of patients					
(First occurrence of inappropriate therapy)	105	21	26	0.21 (0.13-0.34)	<0.001	0.24 (0.15-0.40)	<0.001
Death	34	16	21	0.45 (0.24-0.85)	0.01	0.56 (0.30-1.02)	0.06
First episode of syncope	23	22	22	1.32 (0.71–2.47)	0.39	1.09 (0.58–2.05)	0.80

CONCLUSIONS


Programming of ICD therapies for tachyarrhythmias of \geq 200 BPM or with a prolonged delay in therapy at \geq 170 beats BPM was associated with reductions in inappropriate therapy and all-cause mortality

- 7687 patients from 6 trials: 3598 conventional vs 4089 Therapy reduction programming
- EMPIRIC, MADIT-RIT, ADVANCE-III, PROVIDE, RELEVANT, PREPARE
- No significant heterogeneity among studies was observed (P = 0.6)
- ✤ No significant difference in the risk of syncope (P = 0.5)

Risk of Inappropriate ICD Shocks

Effects on the outcome of All-cause Mortality

Tan VH, et al. Circ AE 2014;7:164

Conclusions—*Therapy reduction programming* results in a *large, significant, and consistent reduction in mortality*, with no apparent increase in the risk of syncope

Suggested ICD Programming

Condition	Arrhythmia	Programming	
Primary Prevention	VF: ≥ 200 BPM	Longer detection time or 30/40 NID	
	FVT: 170-199 BPM	Monitor only	
Secondary Prevention	VF: ≥ 200 BPM	30/40 NID Use 1-2 sequences of burst	
	FVT: 170-199 BPM	Use multiple sequences of ATP	
	VT < 170 BPM	Monitor only	

Recommended ICD Programming

	Prin	nary Preven	tion	Secondary prevention			
zone	Lower rate (BPM)	Duration	Тх	Lower rate (BPM)	Duration	Тх	
VF	220-250	32 intervals 16 intervals 5 seconds	≥ 30J X 6	220-250	18/24 intervals 16 intervals 5 seconds	≥ 30J X 6	
FVT	182	30/40 intervals 16-20 intervals 7 seconds SVT ON	1 burst* ≥30J X 5	200	18/24 intervals 9-12 intervals 5 seconds SVT ON	1 burst* ≥30J X 5	
VT	167	30/40 intervals 16-20 intervals 7 seconds SVT ON	Off (Monitor)	150	16 intervals 16 intervals 7 seconds SVT ON	3 bursts 20J X 1 ≥30J X 3	

Clinical Cardiac Pacing, Defibrillation, Resynchronization Therapy: 3rd Ed, P381

2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management

Electrocardiogram Evaluation of the CRT patients

- ✓ Atrial rhythm—NSR or atrial paced vs. atrial fibrillation
- ✓ Evidence of appropriate atrial sensing or capture
- ✓ Presence of ventricular pacing
- ✓ Presence, frequency, and morphology of PVCs
- ✓ Evidence of appropriate ventricular sensing or capture
- ✓ Morphology of paced QRS—evidence of LV capture
- ✓ Paced QRS width
- ✓ Evidence of pacing fusion or pseudo-fusion in QRS

KUDMC

2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management

Use of Device Diagnostic Data

Ventricular pacing

> 95% (Ideally near to 100%) Make sure it's BiV pacing through ECG

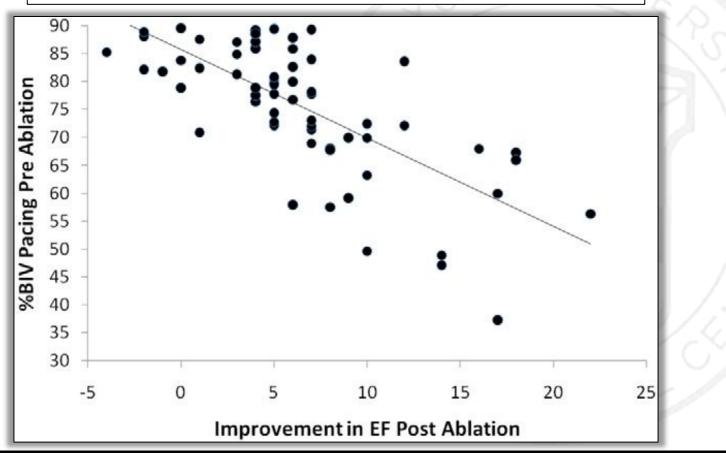
Ventricular sensing

Should be close to 0%

PVC/NSVT

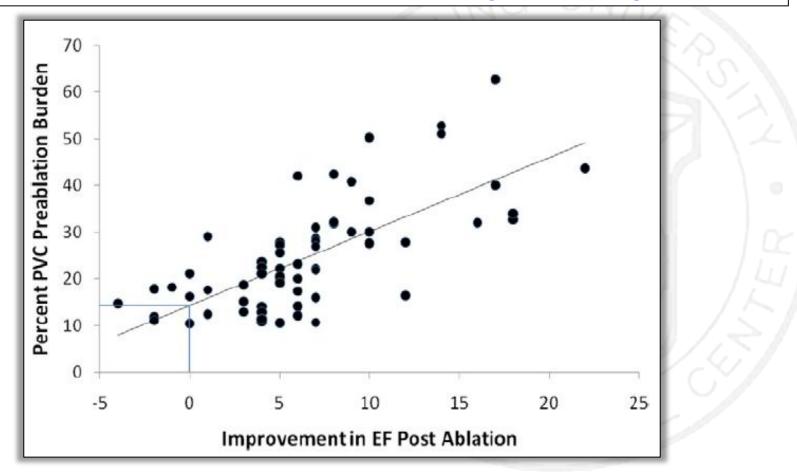
Reduce the time in effective CRT; should be suppressed

AT/AF episodes/Mode switch


Promote native AV conduction: depends on burden

- ✤ 65 patients, CRT nonresponders with PVC > 10,000/24h
- Underwent PVC ablation
- ✤ Acute & long-term success: 91% & 88% in12±4 Mo FU

Changes in Various Echo Parameters Before and After PVC Ablation


Change in Echo Parameters	Pre-Ablation	Post-Ablation	Mean Improvement	p Value
ΔEF	26.2 ± 5.5	32.7 ± 6.7	6.42 ± 5.26	<0.001
Δ LVEDD	$\textbf{6.83} \pm \textbf{0.83}$	$\textbf{6.51} \pm \textbf{0.91}$	-0.32 ± 0.26	<0.001
Δ LVESD	5.83 ± 0.55	5.62 ± 0.32	-0.31 ± 0.23	<0.001
Δ LVESV	178 ± 72	145 ± 23	-33.17 ± 22.94	<0.001
Δ LVEDV	242 ± 85	212 ± 63	-30.65 ± 21.63	<0.001

Correlation Between Pre-Ablation BIV Pacing % & Post-Ablation Improvement in EF

Lakkireddy D, et al. JACC 2012;60:1531

Correlation Between PVC Burden & EF Change Following Ablation

Lakkireddy D, et al. JACC 2012;60:1531

Sites of PVC: LV (75%) vs RV (25%)

- ✓ LV submitral annulus: 28.94%, the rest of LV: (46.06%)
 ✓ RVOT: 15.78%, the rest of RV: 9.22%
- Pre-ablation PVC burden (>22%/24h) revealed an improvement in ejection fraction
- Conclusions: PVC ablation may be used to enhance CRT efficacy in nonresponders with significant PVC burden

Summary

It is important to choose right patients according to current guidelines

Several clinical and device parameters should be taken into account to achieve adequate results

Thank You for Your Attention !

Seongwook Han, MD.PhD.

Professor of Medicine, Keimyung University School of Medicine Arrhythmia Service, Cardiology, Dongsan Medical Center